

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0785 of 20 June 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

MULTI-MONTI-plus

Fasteners for use in concrete for redundant non-structural systems

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND

HECO-Schrauben GmbH & Co. KG

15 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0785 English translation prepared by DIBt

Page 2 of 15 | 20 June 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 20 June 2019

European Technical Assessment ETA-15/0785 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The HECO screw anchor MULTI-MONTI-plus is an anchor of sizes 6, 7.5 and 10 mm made of galvanised steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 2

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

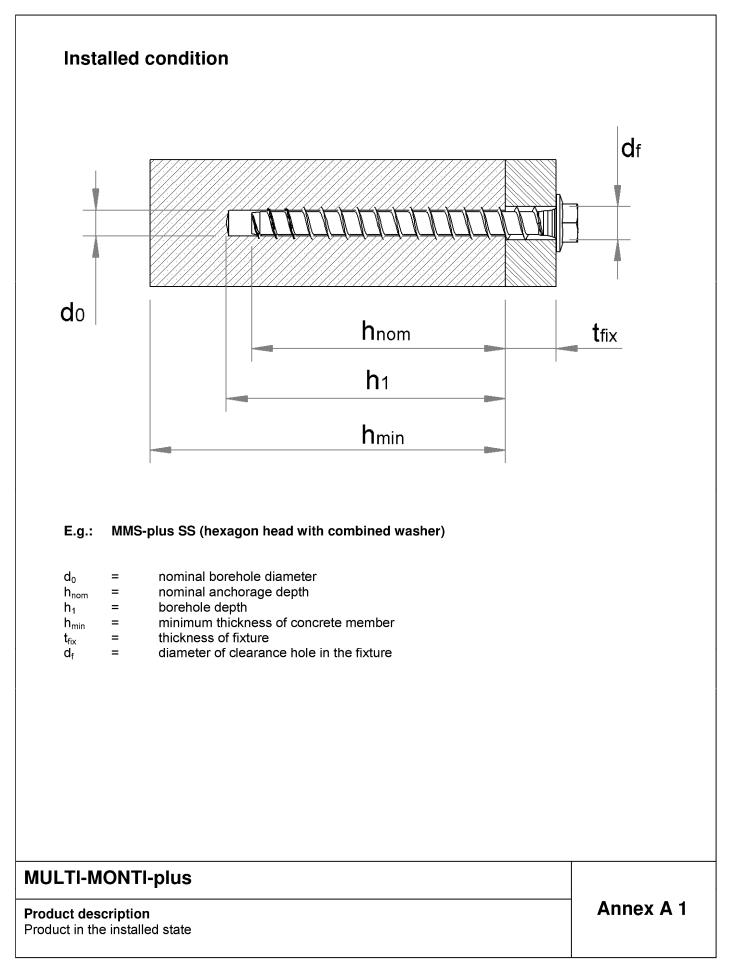
In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

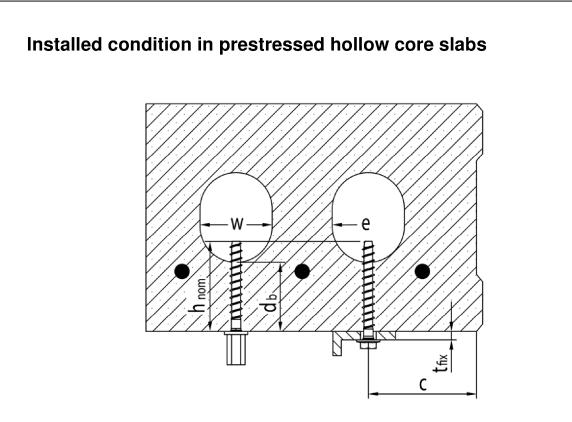
European Technical Assessment ETA-15/0785 English translation prepared by DIBt

Page 4 of 15 | 20 June 2019

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 20 June 2019 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Tempel

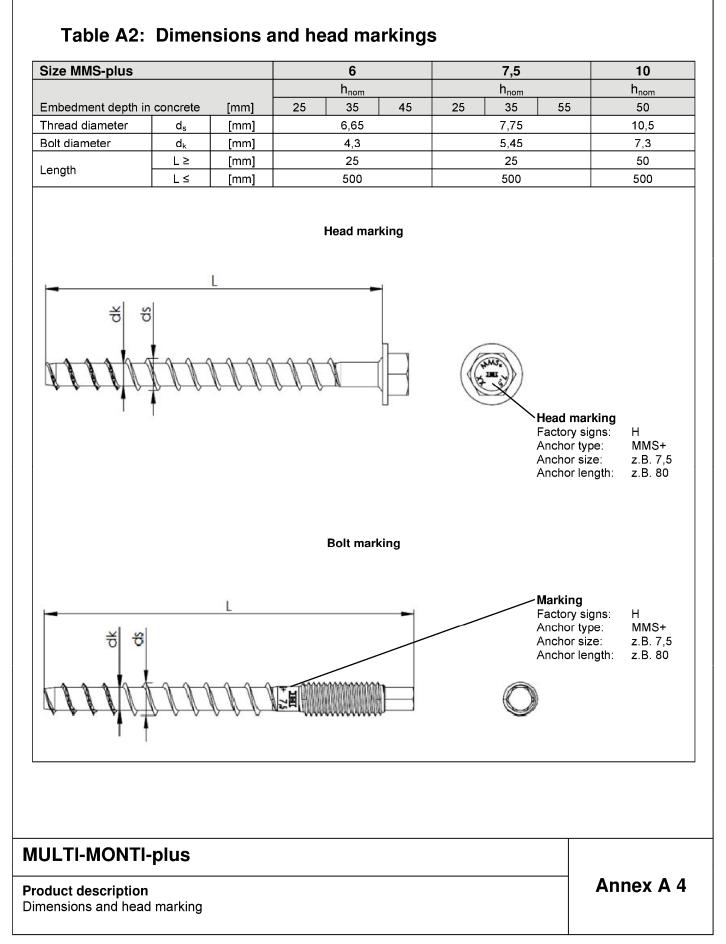
Page 5 of European Technical Assessment ETA-15/0785 of 20 June 2019

E.g.: MMS-plus I (head version with metric stud and coupling sleeve, hexagon head version with combined washer)

- d_b = bottom flange thickness
- h_{nom} = nominal anchorage deep
- w = core width
- e = web width between two core's
- t_{fix} = thickness of fixture
- c = edge distance

MULTI-MONTI-plus

Product description Product in the installed state Annex A 2



Туре	Marking / Material												
	screw anchor / steel ¹⁾												
1 0	Size MMS-plus			6	7,5	10							
1, 2, 3, 4, 5, 6,	nominal value of the characteristic yield strength	f _{yk}	[N/mm²]	640	640	640							
7, 8, 9, 10	nominal value of the characteristic tensile strength	f _{uk}	[N/mm²]	800	800	800							
	elongation at rupture	A ₅	[%]		≤ 8								
	1) galvanized steel according to EN 102	263-4:2	2001 (multi-la	ayered coa	ating syste	ms are pos	ssible)						
			Z III	1)			us S, with and without washer with cone under the head)						
	<i>ATTTUULUUUU</i>			2)			us SS, with hexagon head and washe with cone under the head)						
		11		3)	MULTI-	MONTI-plu	ıs P, PanHead, with small pan head						
				4)	MULTI- large pa		us MS, mounting bar-anchor, with						
		M		5)	MULTI-	MONTI-plu	us F, with countersunk head						
	ATTICLE IN THE CASE	T		6)			us FT, with countersunk head, thread ad and single- or multi-start thread						
		II (7)	underne	eath the he	us ZT, with cylinder head, thread ad and single- or multi-start thread ST, SST & PT possible)						
	U TTT TTTTTTTTT	8		8)	MULTI-	MONTI-plu	is ST, anchor with metric stud						
				9)			us I, anchor with metric stud for pre-assembled with sleeve)						
				10)	MULTI-	MONTI-plu	us V, anchor with metric stud						

MULTI-MONTI-plus

Product description Dimensions and screw types Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi static loads: All sizes.
- Used in concrete for redundant non-structural systems only.
- Fire exposure: All sizes (not in prestressed hollow core slabs).

Base materials:

- · Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and uncracked concrete.
- Prestressed hollow core slabs made of C30/37 to C50/60.

Conditions of use (Environmental conditions):

• Structures subject to dry internal conditions.

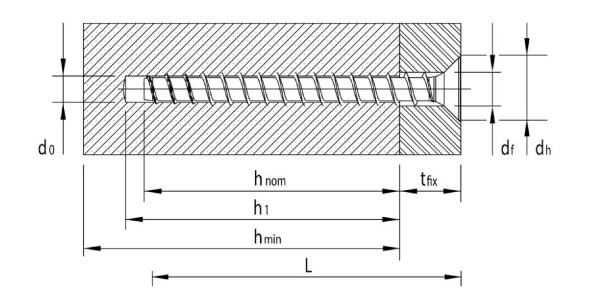
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking the loads to be anchored into account. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055
- The design under shear load according to EN 1992-4:2018, section 6.2.2 applies to all anchors in Annex B 2, Table B1 specified diameter d_f of clearance hole in the fixture.

Installation:

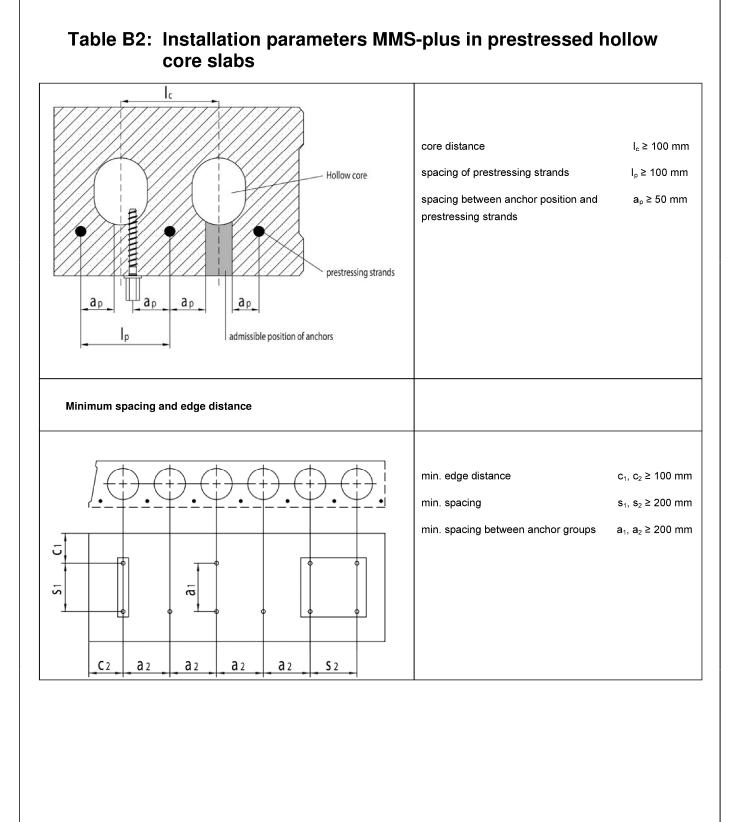
- Hole drilling by hammer-drilling only.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · After installation further turning of the anchor must not be possible.
- The head of the anchor is attached to the fixture and is not damaged, respectively the required embedment depth is reached.
- In prestressed hollow core slabs the screw anchor may be installed from both sides of slabs (top and bottom side), but only in uncracked concrete. The thickness of slab webs and installation parameters according to Table B2 have to be observed (also in the area of solid material).

MULTI-MONTI-plus


Intended Use Specification

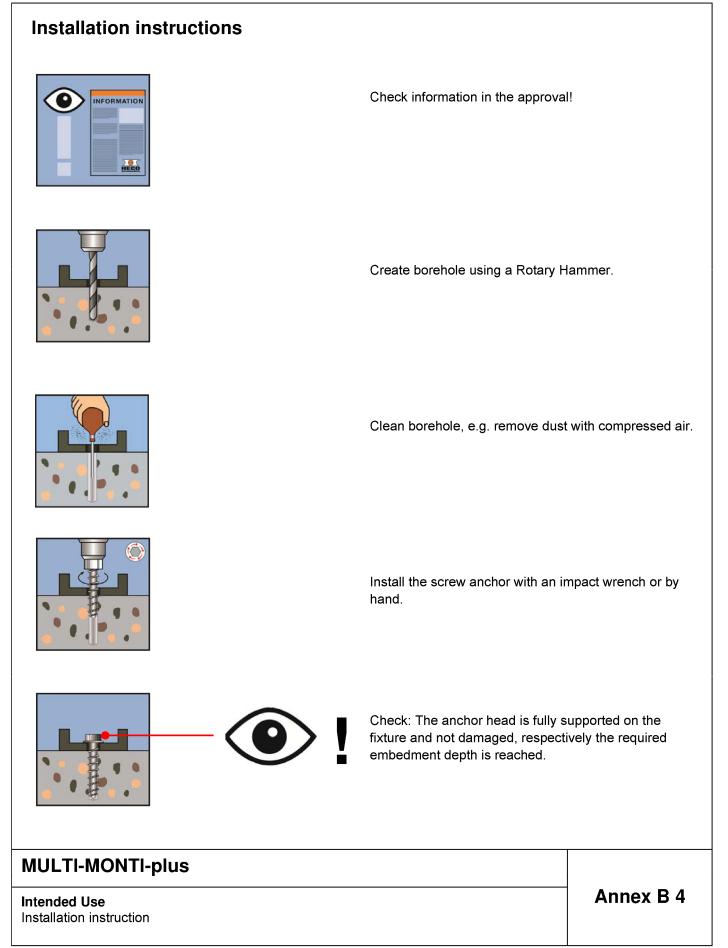
Annex B 1

Table B1: Installation parameters MMS-plus

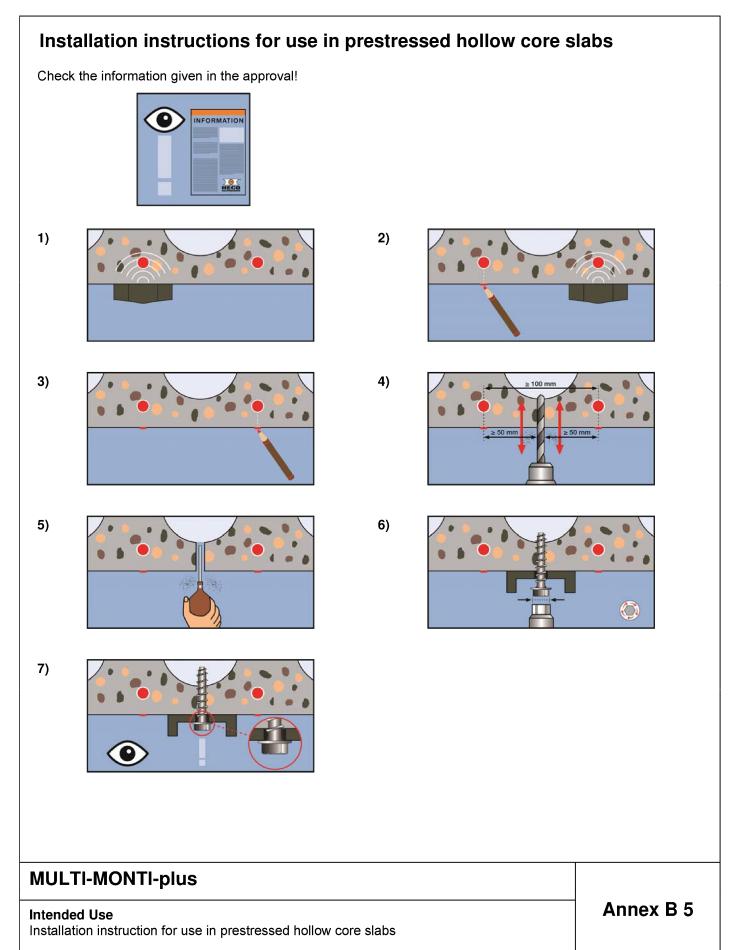

Size MMS-p	olus				6			7,5	10	
					h _{nom}			h _{nom}	h _{nom}	
Embedment of	depth in concret	te	[mm]	25	35	45	25	35	55	50
Nominal drill	diameter	do	[mm]		5			6		8
Cutting edge-	Ø	d _{cut} ≤	[mm]		5,40			6,40		8,45
Borehole dep	th	h₁≥	[mm]	30	40	50	30	40	60	60
Diameter of c in the fixture	learance hole	d _f ≤	[mm]		7			9	12,5	
Diameter of c head	ountersunk	d _h	[mm]		11,5			15,5	19,5	
Min. thicknes concrete men		h _{min}	[mm]	80						
cracked and	min. _spacing	S _{min}	[mm]		30 30 35				35	
uncracked concrete	min. edge distance	C _{min}	[mm]	30 30 30				35		
Recommende	ed installation to	[Nm]	Impact screw driver, max. power output T _{max} according to manufacturer information							
	· · · · · · · · · · · · · · · · · · ·			60	75	100	60	1:	20	250
Torque mome threaded vers (MMS-plus V)	sion	T _{inst}	[Nm]		-		15			20

MULTI-MONTI-plus

Intended Use Installation parameters Annex B 2


MULTI-MONTI-plus

Intended Use


Installation parameters for use in prestressed hollow core slabs

Annex B 3

Table C1:Characteristic values for static and quasi-static
loading of MMS-plus

Size MMS-plus						6			7,5		10		
						h _{nom}			h _{nom}		h _{nom}		
Embedment dept	h in coi	ncrete		[mm]	25	35	45	25	35	55	50		
Steel failure for t	tensio	n- and she	ear load										
Characteristic res	istance	è	N _{Rk,s}	[kN]	10,8 17,6						32,1		
Partial safety fact	or		γMs	-				1,50					
Characteristic res	istance	9	V _{Rk,s}	[kN]		4,1 8,8							
Partial safety fact	or		γMs	-				1,25					
			k ₇	-				0,8					
Characteristic resistance			M ⁰ _{Rk,s}	[Nm]		6,7			14,1		34,5		
Pull-out													
Characteristic resistance in uncracked concrete C20/25		N _{Rk,p}	[kN]	2,0	5,5	8,0	2,0	5,0	5,0	5,0			
Characteristic resistance in cracked concrete C20/25		N _{Rk,p}	[kN]	1,0	1,0	1,5	1,0	2,5	5,0	5,0			
Clacked Collelete	020/2	C25/30			1,12								
Increasing factor			- Ψ _c	-	1.22								
Increasing factor for concrete		C40/50			1,41								
concrete		C50/60			1,58								
Concrete cone fa	ailure :	-	na failu	re				1,00					
Effective anchora		-	h _{ef}	[mm]	16	26	35	16	26	43	36		
Factor for	crack		K _{cr,N}	-	10	20		7,7	20	-10			
		acked	k _{urc,N}	_	11,0								
Concrete cone		distance	C _{cr,N}	[mm]	1,5 h _{ef}								
	spac		S _{cr,N}	[mm]	3 h _{ef}								
Splitting		distance	C _{cr,sp}	[mm]				2,0 h _{ef}					
opining	spac		S _{cr,sp}	[mm]				4,0 h _{ef}					
Installation factor	1	<u> </u>	51,00	-	1,4	1	,0	1,4		1,0			
Concrete pryout	failure)				1		, ,		,			
k-Faktor k ₈ -								1,0					
Concrete edge fa	ailure							,					
Effective length or		nchor	l _f = h _{ef}	[mm]	16	26	35	16	26	43	36		
Effective diameter of the anchor			1	[mm]		5		1	6		8		

MULTI-MONTI-plus

Performance

Characteristic values for static and quasi static tension loads

Table C2:Characteristic values for static and quasi-static
loading of MMS-plus in prestressed hollow core slabs
C30/37 to C50/60

Size MMS-plus	6			7,5			10			
		db	d _b				d _b			
Thickness of slab web [mm]				40	50	30	40	50	40	50
All load directions										
Characteristic resistance in concrete ≥ C30/37	F ⁰ _{Rk}	[kN]	1,0	5,5	6,5	1,2	4,5	8,0	6,5	11,0
Characteristic resistance in concrete ≥ C45/55	F ^o _{Rk}	[kN]	4,5	6,0	6,0	4,0	8,0	8,0	11,5	12,0
Partial safety factor	γм	-	1,5							
Installation factor	γinst	-	1,0							
Edge distance	$c_{cr} = c_{min}$	[mm]] 100 100 120 140					10		
Spacing	s _{cr} = s _{min}	[mm]	200							

Table C3:Characteristic values under fire exposure

Size MMS-plus	S				6	7	,5	10	
				h _{nom}		h _{nom}		h _{nom}	
Embedment dep	th in concrete		[mm]	35	45	35	55	50	
Characteristic r	esistance for ten	sion and	shear						
	R30	F _{Rk,fi}	[kN]	0,3	0,4	0,5	1,1	1,3	
	R60	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,8	1,3	
	R90	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,5	1,0	
Characteristic	R120	F _{Rk,fi}	[kN]	0,2	0,3	0,4	0,4	0,8	
resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]	0,5		1,1		2,7	
	R60	M ⁰ _{Rk,s,fi}	[Nm]	(),3	0	,6	1,5	
	R90	M ⁰ _{Rk,s,fi}	[Nm]	(),2	0	,4	1,1	
	R120	M ⁰ _{Rk,s,fi}	[Nm]	(),2	0	,3	0,9	
								·	
	R30 to R120	C _{cr,fi}	[mm]	2 h _{ef}					
		· · · ·							
	R30 to R120	S _{cr,fi}	[mm]			2 (Ccr,fi		

MULTI-MONTI-plus

Performance

Characteristic values under fire exposure